

Please write clearly in	า block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level **MATHEMATICS**

Paper 1

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
TOTAL			

Answer all questions in the spaces provided.

1 State the set of values of x which satisfies the inequality

$$(x-3)(2x+7) > 0$$

Tick (✓) one box.

[1 mark]

$$\left\{ x: -\frac{7}{2} < x < 3 \right\}$$

$$\left\{x: x < -3 \text{ or } x > \frac{7}{2}\right\}$$

$$\left\{x: x < -\frac{7}{2} \text{ or } x > 3\right\}$$

$$\left\{ x : -3 < x < \frac{7}{2} \right\}$$

2 Given that $y = \ln(5x)$

find
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$

Circle your answer.

[1 mark]

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5x}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5}{x}$$

$$\frac{dy}{dx} = \frac{1}{x} \qquad \qquad \frac{dy}{dx} = \frac{1}{5x} \qquad \qquad \frac{dy}{dx} = \frac{5}{x} \qquad \qquad \frac{dy}{dx} = \ln 5$$

3	A geometric sequence has a sum to infinity of -3				
	A second sequence is formed by multiplying each term of the original sequence by -2				
	What is the sum to infinity of the new sequence?				
	Circle your answer.				
	[1 mark] The sum to				
	infinity does not -6 -3 6 exist				
	CAIST				
4	Millie is attempting to use proof by contradiction to show that the result of multiplying an irrational number by a non-zero rational number is always an irrational number.				
	Select the assumption she should make to start her proof.				
	Tick (✓) one box. [1 mark]				
	Every irrational multiplied by a non-zero rational				
	is irrational.				
	Every irrational multiplied by a non-zero rational is rational.				
	There exists a non-zero rational and an irrational whose product is irrational.				
	There exists a non-zero rational and an irrational whose product is rational.				
	Turn over for the next question				

5	The line <i>L</i> has equation			
	3y - 4x = 21			
	The point <i>P</i> has coordinates (15, 2)			
5 (a)	Find the equation of the line perpendicular to L which passes through P .	[2 marks]		
5 (b)	Hence, find the shortest distance from <i>P</i> to <i>L</i> .	[4 marks]		
	·			

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

0 5

6 (a)	The ninth term of an arithmetic series is 3			
	The sum of the first n terms of the series is S_n and $S_{21}=42$			
	Find the first term and common difference of the series.	[4 marks]		

6 (b)	A second arithmetic series has first term -18 and common difference $\frac{3}{4}$	
	The sum of the first n terms of this series is T_n	
	Find the value of n such that $T_n = S_n$	[3 marks]

Turn over for the next question

7	The equation $x^2 = x^3 + x - 3$ has a single solution, $x = \alpha$	
7 (a)	By considering a suitable change of sign, show that $\boldsymbol{\alpha}$ lies between 1.5 and	1.6 [2 marks]
7 (b)	Show that the equation $x^2 = x^3 + x - 3$ can be rearranged into the form	
	$x^2 = x - 1 + \frac{3}{x}$	
	X	[2 marks]

7 (c)	Use the iterative formula
	$x_{n+1} = \sqrt{x_n - 1 + \frac{3}{x_n}}$
	with $x_1=1.5$, to find x_2,x_3 and $x_4,$ giving your answers to four decimal places. [2 marks]
7 (d)	Hence, deduce an interval of width 0.001 in which α lies.

Turn over for the next question

8 (a)	(a) Given that				
		$9\sin^2\theta+\sin2\theta=8$			
	show that				
	Show that				
		$8\cot^2\theta-2\cot\theta-1=0$	[4 marks]		
			[+ marks]		

8	(b)	Hence, solve
---	-----	--------------

$$9\sin^2\theta + \sin 2\theta = 8$$

in the interval $\,0<\theta<2\pi\,$

Give your answers to two decimal places.

[3 marks]

_		

8 (c) Solve

$$9\sin^2\left(2x - \frac{\pi}{4}\right) + \sin\left(4x - \frac{\pi}{2}\right) = 8$$

in the interval $0 < x < \frac{\pi}{2}$

Give your answers to one decimal place.

[2 marks]

9 The table below shows the annual global production of plastics, P, measured in millions of tonnes per year, for six selected years.

Year	1980	1985	1990	1995	2000	2005
P	75	94	120	156	206	260

It is thought that P can be modelled by

$$P = A \times 10^{kt}$$

where t is the number of years after 1980 and A and k are constants.

9 (a)	Show algebraically	that the graph of le	og ₁₀ P against	t should be linear.
-------	--------------------	----------------------	----------------------------	---------------------

[3	ma	ırks]

9 (b) (i) Complete the table below.

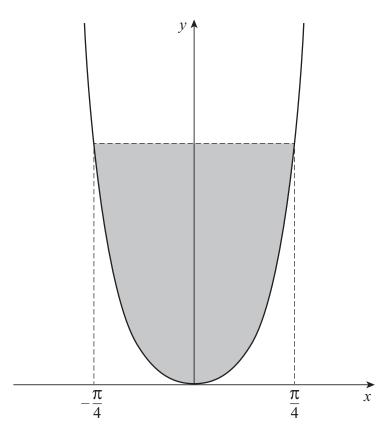
t	0	5	10	15	20	25
log ₁₀ P	1.88	1.97	2.08		2.31	

[1 mark]

	Plot log ₁₀ P ag						[2 marks]
	log ₁₀ <i>P</i>						
	2						
	1						
	0 0						→
	^				\sim	25	4
	U	5	10	15	20	25	t
9 (c) (i)					20	23	
9 (c) (i)	Hence, show t				20	23	[2 marks]
9 (c) (i)					20	23	
9 (c) (i)					20	25	
9 (c) (i)					20	25	
9 (c) (i)					20	25	
9 (c) (i)					20	25	
9 (c) (i)					20	25	
9 (c) (i)					20	25	
9 (c) (i)					20	25	
9 (c) (i)					20	25	
		that k is appro			20	25	[2 marks]
	Hence, show t	that k is appro			20	25	
	Hence, show t	that k is appro			20	25	[2 marks]
	Hence, show t	that k is appro			20	25	[2 marks]
	Hence, show t	that k is appro			20	25	[2 marks]
	Hence, show t	that k is appro			20	25	[2 marks]

9 (d)	Using the model with $k=0.02$ predict the number of tonnes of annual global production of plastics in 2030. [2 marks]
9 (e)	Using the model with $k=0.02$ predict the year in which P first exceeds 8000 [3 marks]
9 (f)	Give a reason why it may be inappropriate to use the model to make predictions about future annual global production of plastics. [1 mark]

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED


1 5

Turn over ▶

10 (a)	Given that		
		$y = \tan x$	
	use the quotient rule to show that		
		dv 2	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x$	[3 marks]
			[5 marks]

10 (b) The region enclosed by the curve $y = \tan^2 x$ and the horizontal line, which intersects the curve at $x = -\frac{\pi}{4}$ and $x = \frac{\pi}{4}$, is shaded in the diagram below.

Show that the area of the shaded region is

$$\pi - 2\,$$

Fully justify your answer.

[5 marks]

-
-

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

1 9

Turn over ▶

11	A curve, C, passes through the point with coordinates (1, 6)					
	The gradient of C is given by					
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{6}(xy)^2$					
	Show that C intersects the coordinate axes at exactly one point and state the coordinates of this point.					
	Fully justify your answer. [8 marks]					

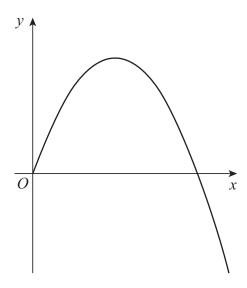
Turn over for the next question
Turn over for the next question

Turn over ▶

12	The equation of a curve is	
	$(x+y)^2 = 4y + 2x + 8$	
	The curve intersects the positive x -axis at the point P .	
12 (a)	Show that the gradient of the curve at P is $-\frac{3}{2}$	
	_	[6 marks]

12 (b)	Find the equation of the normal to the curve at P , giving your answer in th $ax + by = c$, where a , b and c are integers.	e form
		[2 marks
	- 	
	Turn over for the next question	

13 (a)	Given that	
	$P(x) = 125x^3 + 150x^2 + 55x + 6$	
	use the factor theorem to prove that $(5x + 1)$ is a factor of $P(x)$.	[2 marks]
13 (b)	Factorise $P(x)$ completely.	[3 marks]


13 (c)	Hence, prove that $250n^3 + 300n^2 + 110n + 12$ is a multiple of 12 when n is a positive whole number.	
		[3 marks]
	Turn over for the next question	

The curve C is defined for $t \ge 0$ by the parametric equations

$$x = t^2 + t$$
 and $y = 4t^2 - t^3$

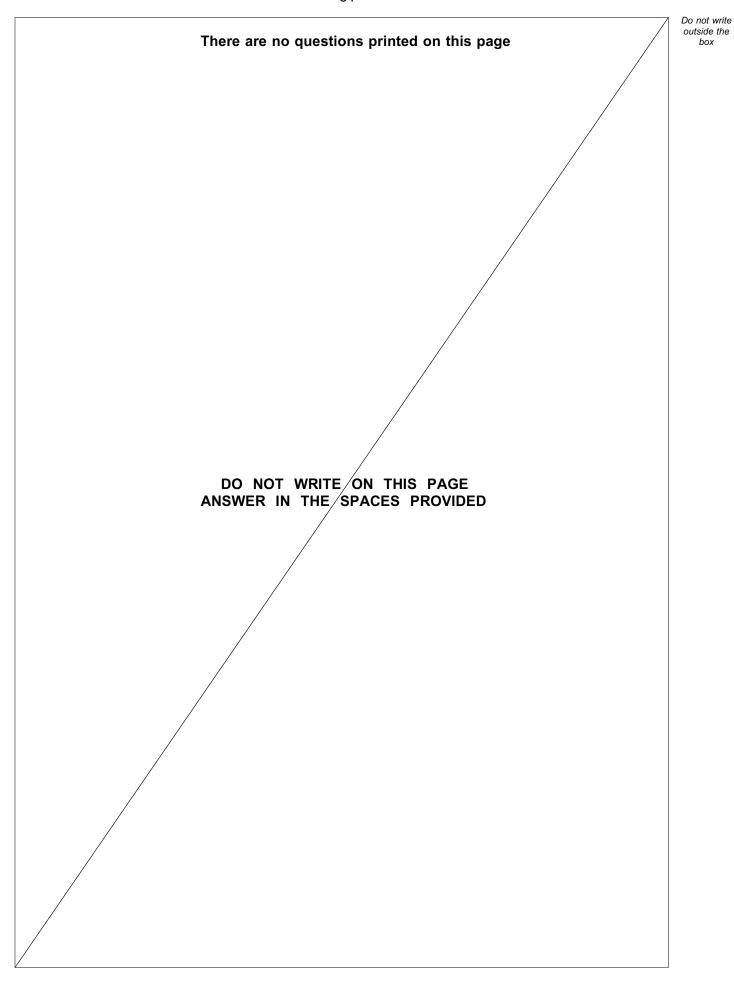
C is shown in the diagram below.

14 (a) Find the gradient of C at the point where it intersects the positive x-axis.

[5 marks]

14 (b) (ı)	The area A enclosed between C and the x -axis is given by	
	$A = \int_0^b y \mathrm{d}x$	
	Find the value of b .	[1 mark]
14 (b) (ii)	Use the substitution $y = 4t^2 - t^3$ to show that	
	$A = \int_0^4 (4t^2 + 7t^3 - 2t^4) \mathrm{d}t$	
		[3 marks]
14 (b) (iii)		
	Find the value of A .	
. , , ,		[1 mark]

15 (a)	Show that	
	$\sin x - \sin x \cos 2x \approx 2x^3$	
	for small values of x .	[3 marks]
15 (b)	Hence, show that the area between the graph with equation	
	$y = \sqrt{8(\sin x - \sin x \cos 2x)}$	
	the positive x -axis and the line $x = 0.25$ can be approximated by	
	Area $\approx 2^m \times 5^n$	
	where m and n are integers to be found.	[4 marks]


15 (c) (i)	Explain why	
	$\int_{6.3}^{6.4} 2x^3 \mathrm{d}x$ is not a suitable approximation for $\int_{6.3}^{6.4} (\sin x - \sin x \cos 2x) \mathrm{d}x$ [1 mark]]
	Question 15 continues on the next page	

15 (c) (ii)	Explain how
	$\int_{6.3}^{6.4} (\sin x - \sin x \cos 2x) \mathrm{d}x$
	may be approximated by
	$\int_{a}^{b} 2x^{3} dx$
	for suitable values of a and b . [2 marks]

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

36 There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

